Bendros tikimybės taisyklė - apžvalga, formulė ir sprendimų medžiai

Bendros tikimybės taisyklė (taip pat žinoma kaip bendros tikimybės dėsnis) yra pagrindinė statistikos taisyklė. Pagrindinės statistikos sąvokos finansams Tvirtas statistikos supratimas yra nepaprastai svarbus, kad padėtų mums geriau suprasti finansus. Be to, statistikos sąvokos gali padėti investuotojams stebėti sąlyginę ir ribinę tikimybę. Taisyklė teigia, kad jei įvykio tikimybė nežinoma, ją galima apskaičiuoti naudojant žinomą kelių skirtingų įvykių tikimybę.

Apsvarstykite situaciją paveikslėlyje žemiau:

Bendros tikimybės taisyklė

Yra trys įvykiai: A, B ir C. Įvykiai B ir C skiriasi vienas nuo kito, o A įvykis susikerta su abiem įvykiais. Mes nežinome A įvykio tikimybės. Tačiau mes žinome A įvykio tikimybę pagal B sąlygą ir A įvykio tikimybę pagal C sąlygą.

Bendros tikimybės taisyklė teigia, kad naudodamiesi dviem sąlyginėmis tikimybėmis galime rasti A įvykio tikimybę.

Bendros tikimybės taisyklės formulė

Matematiškai bendrą tikimybės taisyklę galima užrašyti šia lygtimi:

Bendros tikimybės taisyklė - formulė

Kur:

  • n - įvykių skaičius
  • Bn- atskiras įvykis

Atminkite, kad daugybos tikimybės taisyklė nurodo:

P (A ∩ B) = P (A | B) × P (B)

Pavyzdžiui, bendrą įvykio A tikimybę iš aukščiau nurodytos situacijos galima rasti naudojant žemiau pateiktą lygtį:

P (A) = P (A ∩ B) + P (A ∩ C)

Bendros tikimybės taisyklė ir sprendimų medžiai

Sprendimų medis yra paprastas ir patogus būdas vizualizuoti problemas su bendros tikimybės taisykle. Sprendimų medis vaizduoja visus galimus įvykius iš eilės. Naudodamiesi sprendimų medžiu, galite greitai nustatyti įvykių sąsajas ir apskaičiuoti sąlygines tikimybes.

Norėdami suprasti, kaip naudoti sprendimų medį apskaičiuojant bendrą tikimybę, apsvarstykime šį pavyzdį:

Esate akcijų analitikas, sekantis „ABC Corp“. Atradote, kad įmonė planuoja pradėti naują projektą, kuris greičiausiai turės įtakos bendrovės akcijų kainai. Jūs nustatėte šias tikimybes:

  • 60% tikimybė pradėti naują projektą Projekto vertinimo peržiūros technika (PERT) Projekto valdyme projekto vertinimo peržiūros technika arba PERT naudojama nustatyti laiką, kurio reikia tam tikrai užduočiai ar veiklai užbaigti. Tai yra .
  • Jei įmonė pradės projektą, yra 75% tikimybė, kad jos akcijų kaina padidės.
  • Jei įmonė nepradės projekto, yra 30% tikimybė, kad jos akcijų kaina padidės.

Norite sužinoti tikimybę, kad įmonės akcijų kaina padidės. Sprendimo medis dėl problemos yra:

Bendros tikimybės taisyklė ir sprendimų medis

Naudodamiesi sprendimų medžiu, galime apskaičiuoti šias sąlygines tikimybes:

P (pradėti projektą | akcijų kainos padidėjimas) = ​​0,6 × 0,75 = 0,45

P (nepaleisti | Akcijų kainos padidėjimas) = ​​0,4 × 0,30 = 0,12

Pagal bendros tikimybės taisyklę, akcijų kainos padidėjimo tikimybė yra:

P (Akcijų kainos padidėjimas) = ​​P (Pradėti projektą | Akcijų kainos padidėjimas) + P (Nepaleisti | Akcijų kainos padidėjimas)

= 0.45 + 0.12 = 0.57

Taigi yra 57% tikimybė, kad bendrovės akcijų kaina padidės.

Susiję skaitymai

Finansai siūlo finansinio modeliavimo ir vertinimo analitikui (FMVA) ™ FMVA® atestaciją. Prisijunkite prie 350 600 ir daugiau studentų, dirbančių tokiose įmonėse kaip „Amazon“, J. P. Morganas ir „Ferrari“ sertifikavimo programa tiems, kurie nori pakelti savo karjerą į kitą lygį. Norint toliau mokytis ir tobulėti karjeroje, bus naudingi šie finansų ištekliai:

  • Laukiama grąža Laukiama grąža Laukiama investicijos grąža yra tikėtina tikėtinos galimo grąžos, kurią ji gali suteikti investuotojams, pasiskirstymo vertė. Investicijos grąža yra nežinomas kintamasis, kurio skirtingos vertės susijusios su skirtinga tikimybe.
  • „Fibonacci Numbers“ „Fibonači“ numeriai „Fibonacci Numbers“ yra skaičiai, rasti sveikų skaičių sekoje, kurią atrado / sukūrė matematikas Leonardo Fibonači. Seka yra skaičių eilė
  • Hipotezių tikrinimas Hipotezių testavimas Hipotezių tikrinimas yra statistinės išvados metodas. Jis naudojamas norint patikrinti, ar teiginys apie populiacijos parametrą yra teisingas. Hipotezės bandymas
  • Puasono pasiskirstymas Puasono pasiskirstymas Puasono pasiskirstymas yra tikimybių teorijos statistikoje naudojamas įrankis, leidžiantis numatyti variacijos dydį pagal žinomą vidutinį įvykio dažnį

Naujausios žinutės

$config[zx-auto] not found$config[zx-overlay] not found